Source code for metatrain.cli.export

import argparse
import logging
import os
from pathlib import Path
from typing import Optional, Union

import torch
from metatomic.torch import ModelMetadata, is_atomistic_model
from omegaconf import OmegaConf

from ..utils.io import check_file_extension, load_model
from ..utils.metadata import merge_metadata
from .formatter import CustomHelpFormatter


def _add_export_model_parser(subparser: argparse._SubParsersAction) -> None:
    """Add `export_model` paramaters to an argparse (sub)-parser."""

    if export_model.__doc__ is not None:
        description = export_model.__doc__.split(r":param")[0]
    else:
        description = None

    # If you change the synopsis of these commands or add new ones adjust the completion
    # script at `src/metatrain/share/metatrain-completion.bash`.
    parser = subparser.add_parser(
        "export",
        description=description,
        formatter_class=CustomHelpFormatter,
    )
    parser.set_defaults(callable="export_model")

    parser.add_argument(
        "path",
        type=str,
        help=(
            "Saved model which should be exported. Path can be either a URL or a "
            "local file."
        ),
    )
    parser.add_argument(
        "-o",
        "--output",
        dest="output",
        type=str,
        required=False,
        help=(
            "Filename of the exported model (default: <stem>.pt, "
            "where <stem> is the name of the checkpoint without the extension)."
        ),
    )
    parser.add_argument(
        "-e",
        "--extensions",
        dest="extensions",
        type=str,
        required=False,
        default="extensions/",
        help=(
            "Folder where the extensions of the model, if any, will be collected "
            "(default: %(default)s)."
        ),
    )
    parser.add_argument(
        "-m",
        "--metadata",
        type=str,
        required=False,
        dest="metadata",
        default=None,
        help="Metatdata YAML file to be appended to the model.",
    )
    parser.add_argument(
        "--token",
        dest="hf_token",
        type=str,
        required=False,
        default=None,
        help="HuggingFace API token to download (private) models from HuggingFace. "
        "You can also set a environment variable `HF_TOKEN` to avoid passing it every "
        "time.",
    )


def _prepare_export_model_args(args: argparse.Namespace) -> None:
    """Prepare arguments for export_model."""

    hf_token = args.__dict__.get("hf_token", None)

    # use env variable if available
    env_hf_token = os.environ.get("HF_TOKEN")
    if env_hf_token:
        if hf_token is None:
            args.__dict__["hf_token"] = env_hf_token
        else:
            raise ValueError(
                "Both CLI and environment variable tokens are set for HuggingFace. "
                "Please use only one."
            )

    if args.metadata is not None:
        args.metadata = ModelMetadata(**OmegaConf.load(args.metadata))

    # only these are needed for `export_model``
    keys_to_keep = ["path", "output", "extensions", "hf_token", "metadata"]
    original_keys = list(args.__dict__.keys())

    for key in original_keys:
        if key not in keys_to_keep:
            args.__dict__.pop(key)
    if args.__dict__.get("output") is None:
        args.__dict__["output"] = Path(args.path).stem + ".pt"


[docs] def export_model( path: Union[Path, str], output: Union[Path, str], extensions: Union[Path, str] = "extensions/", hf_token: Optional[str] = None, metadata: Optional[ModelMetadata] = None, ) -> None: """Export a trained model allowing it to make predictions. This includes predictions within molecular simulation engines. Exported models will be saved with a ``.pt`` file ending. If ``path`` does not end with this file extensions ``.pt`` will be added and a warning emitted. :param path: path to a model file to be exported :param output: path to save the model :param extensions: path to save the extensions :param hf_token: HuggingFace API token to download (private) models from HuggingFace (optional) :param metadata: metadata to be appended to the model """ if Path(output).suffix == ".ckpt": checkpoint = torch.load(path, weights_only=False, map_location="cpu") path = str(Path(output).absolute().resolve()) extensions_path = None if metadata is not None: current_metadata = checkpoint.get("metadata", ModelMetadata()) metadata = merge_metadata(current_metadata, metadata) checkpoint["metadata"] = metadata torch.save(checkpoint, path) else: model = load_model(path=path, hf_token=hf_token) path = str( Path(check_file_extension(filename=output, extension=".pt")) .absolute() .resolve() ) if _has_extensions(): extensions_path = str(Path(extensions).absolute().resolve()) else: extensions_path = None if not is_atomistic_model(model): model = model.export(metadata) model.save(path, collect_extensions=extensions_path) if extensions_path is not None: logging.info( f"Model exported to '{path}' and extensions to '{extensions_path}'" ) else: logging.info(f"Model exported to '{path}'")
def _has_extensions(): """ Check if any torch extensions are currently loaded, except for metatensor_torch and metatomic_torch. """ loaded_libraries = torch.ops.loaded_libraries for lib in loaded_libraries: if "metatensor_torch." in lib: continue elif "metatomic_torch." in lib: continue return True return False